A NOTE ON BRUHAT DECOMPOSITION OF GL(n) OVER LOCAL PRINCIPAL IDEAL RINGS
نویسنده
چکیده
Let A be a local commutative principal ideal ring. We study the double coset space of GLn(A) with respect to the subgroup of upper triangular matrices. Geometrically, these cosets describe the relative position of two full flags of free primitive submodules of A. We introduce some invariants of the double cosets. If k is the length of the ring, we determine for which of the pairs (n, k) the double coset space depends on the ring in question. For n = 3, we give a complete parametrisation of the double coset space and provide estimates on the rate of growth of the number of double cosets.
منابع مشابه
Representations of Reductive Groups
This course consists of two parts. In the first we will study representations of reductive groups over local non-archimedian fields [ such as Qp and Fq((s))]. In this part I’ll closely follow the notes of the course of J.Bernstein. Moreover I’ll often copy big chanks from these notes. In the second the representations of reductive groups over 2-dimensional local fields [ such as Qp((s))]. In th...
متن کاملOn nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملThe principal ideal subgraph of the annihilating-ideal graph of commutative rings
Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where $mathbb{P}(R)$ is...
متن کاملA note on the socle of certain types of f-rings
For any reduced commutative $f$-ring with identity and bounded inversion, we show that a condition which is obviously necessary for the socle of the ring to coincide with the socle of its bounded part, is actually also sufficient. The condition is that every minimal ideal of the ring consist entirely of bounded elements. It is not too stringent, and is satisfied, for instance, by rings of ...
متن کاملA Guide to Cohen’s Structure Theorem for Complete Local Rings
The purpose of this note is to provide for my algebra class a guide to the proof of Cohen's structure theorem for complete local rings as given by Cohen himself, in the original 1946 paper [C]. In spite of more modern and concise treatments by the likes of Nagata and Grothendieck, the original proof is a model of clarity and the entire paper is a commutative algebra masterpiece. First, a few wo...
متن کامل